New Podcast Episode. Tuning the X.
Epigenetic regulation of gene expression is an important mechanism in development and disease. N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications for RNA and has been shown to play critical roles in processes such as embryo development, cancer, and stress responses. Our guests today investigate how m6A regulates X chromosome dosage compensation to ensure proper balance of gene expression from X chromosomes between sexes. X-chromosome dosage compensation is accomplished through two complementary mechanisms. First, X-chromosome inactivation (XCI) silences one of the two X chromosomes in female cells. Second, the remaining active X chromosome is transcriptionally upregulated so that its gene expression levels are balanced with those of the autosomes, a process known as X-to-autosome (X-to-A) compensation. The authors dissect the distinct contributions of m6A RNA methylation to XCI versus X-to-A compensation across multiple embryonic lineages, providing deeper insights into the epigenetic regulation of early development.
Guests
Srimonta Gayen, PhD, Department of Developmental Biology and Genetics, Indian Institute of Science, India
Supporting Content
Paper link: The role of m6A RNA methylation in the maintenance of X chromosome inactivation and X-to-autosome dosage compensation in early embryonic lineages, Stem Cell Reports